Structural analysis

for a cylindrical flat bottomed tank made from polyethylene PE 100

Project title:	Test Project qwertz asdfgh yxcvbn miscellaneous information
Medium:	Hydrochloric acid, 37% Installation:
inside	
Order number:	123
Tank number:	007
Customer:	Client ABC 123 XXXX
Operating company:	ABC
Installation location:	0000 town, Great Britain

These structural analysis was prepared by:

April 25, 2016
Date Signature

Contents

1 Preliminary note 3
1.1 Scope 3
1.2 Design, operation 3
1.3 Installation, anchorage 3
1.4 Storage liquid 3
1.5 Temperatures 4
1.6 Safety factors 4
1.7 Miscellaneous 5
2 Dimensions 5
2.1 Tank 5
2.2 Nozzles 6
2.3 Overview drawing 7
3 Material 8
3.1 Density 8
3.2 Values depending on temperature 8
3.3 Reduction factor A2 8
3.4 Welding factors 8
4 Loadings 9
4.1 Dead weight 9
4.2 Loadings from attachments 10
4.3 Overpressure and underpressure 10
4.4 Snow load 10
4.5 Wind load 11
5 Axial stresses in the cylinder 11
5.1 Axial stresses from the individual load cases 11
5.2 Axial stresses in the area of nozzles 11
5.3 Axial stresses from load combinations 13
6 Proofs 13
6.1 Proof of the conical roof 13
6.2 Proof of the cylindrical shell 17
6.3 Proof of the bottom plate 23
6.4 Proof of the anchorage 24
6.5 Proof of the lifting lugs 25
7 Summary 26

1 Preliminary note

1.1 Scope

This structural analysis is based on guideline DVS 2205-2, issued by the Deutscher Verband für Schweißtechnik (German Association for Welding and Allied Processes).

The abbreviations used in this structural analysis correspond with the Guideline DVS 2205-2. In order to avoid recurrent calculation processes and to increase clarity, assumed values ϕ are described in section 6 (proofs). These assumed values are not contained in the guideline DVS 2205-2.

Contrary to the information provided in DVS 2205-2, in this structural analysis the lowest cylinder tier is not referenced with the index ' F ', but the index ' 2 ', as in this instance there are 2 cylinder tiers.

It is assumed that the tank is manufactured according to standard technical regulations, transported with due care and properly installed. Of particular importance is an even surface under the tank, the bottom of which must be completely flush with the foundation. The structural analysis of the foundation is not part of this calculation.

Underlying drawings:
1
2

1.2 Design, operation

PE 100 will be used as material for the tank. An adequate resistance of the tank material to the storage liquid is expected for the intended design life and operational temperature.

The estimated service life of the storage tank is 25 Years.
The tank is ventilated. As a result there can be no inner build up of long-term overpressure or underpressure.

The tank roof will be in the form of a cone. The connection between roof and cylinder corresponds to DVS 2205-2, figure 13.

The cylinder shell is constructed of tiered wall thickness out of a wound cylinder or an extruded pipe.

The connection between cylinder and bottom corresponds to DVS 2205-2, figure 12.
The tank must have a residual filling height of $h_{R F} \geq 24 \mathrm{~mm}$ (see section 6.3).

1.3 Installation, anchorage

The tank is to be installed in an enclosed building. Pressure from wind and snow will therefore not be assessed. Angaben zur Verankerung sind dem Abschnitt 6.4 zu entnehmen.

1.4 Storage liquid

The tank is to be used to store Hydrochloric acid, 37%.

```
Density \(\quad \rho_{F}=1.500 \mathrm{~g} / \mathrm{cm}^{3}\)
Specific weight
\(\gamma_{F}=14.71 \mathrm{kN} / \mathrm{m}^{3}\)
Filling volume \(\quad V_{F}=12.01 \mathrm{~m}^{3}\)
Filling height \(\quad h_{F}=2654 \mathrm{~mm}\)
```

Weight of the storage liquid: $G_{F}=V_{F} \times \gamma_{F}=12.01 \times 14.71=176.6 \mathrm{kN}$

1.5 Temperatures

1.5.1 Operating and ambient temperature

The temperature of the storage liquid is:
long-term: $\quad T_{M}=20^{\circ} \mathrm{C} \quad$ (= middle temperature)
short-term: $\quad T_{M K}=30^{\circ} \mathrm{C}$
The average Temperature T_{M} is the temperature, which causes the same damage of the tank material, like changing temperatures in real operation.

The environment temperature for indoor installation is:
long-term: $\quad T_{A}=30^{\circ} \mathrm{C}$
short-term: $\quad T_{A K}=40^{\circ} \mathrm{C}$

1.5.2 Design Temperatures

The temperatures which can be set for the stress and stability proofs are computed according to DVS 2205-2.
a) Conical Roof

$$
\begin{array}{ll}
\text { long-term: } & T_{D}=\left(T_{M}+T_{A}\right) \times 0.5=(20+30) \times 0.5=25.0^{\circ} \mathrm{C} \\
\text { short-term: } & T_{D K}=\left(T_{M K}+T_{A K}\right) \times 0.5=(30+40) \times 0.5=35.0^{\circ} \mathrm{C}
\end{array}
$$

b) Cylinder, above the liquid level
long-term: $\quad T_{Z, o}=\left(T_{M}+T_{A}\right) \times 0.5=(20+30) \times 0.5=25.0^{\circ} \mathrm{C}$
short-term: $\quad T_{Z K, o}=\left(T_{M K}+T_{A K}\right) \times 0.5=(30+40) \times 0.5=35.0^{\circ} \mathrm{C}$
c) Cylinder, below the liquid level

$$
\begin{array}{ll}
\text { long-term: } & T_{Z}=T_{M}=20.0^{\circ} \mathrm{C} \\
\text { short-term: } & T_{Z K}=T_{M K}=30.0^{\circ} \mathrm{C}
\end{array}
$$

1.6 Safety factors

For proof of stress and proof of stability (see section 6) the following partial safety factors apply:

```
\(\gamma_{F 1}=1.35\) for effects from dead load, filling and mountings
\(\gamma_{F 2}=1.50\) for effects from overpressure, underpressure, wind and snow
\(\gamma_{F 3}=0.90\) for dead weight decreasing stress
\(\gamma_{I}=1.20\) Importance factor
\(\gamma_{M}=1.10\) Partial safety factor of the resistance or, alternatively, of the load capacity
```


1.7 Miscellaneous

miscellaneous information

2 Dimensions

2.1 Tank

2.1.1 Main dimensions

Internal diameter $\quad d=2400 \mathrm{~mm}$
Cylindrical height $\quad h_{Z}=3210 \mathrm{~mm} \quad$ (up to the lower edge of the conical roof)

Height of conical roof	$h_{D}=322 \mathrm{~mm}$
Total height	$h=3532 \mathrm{~mm}$

Roof slope $\quad \alpha_{D}=15^{\circ}$
$\kappa=75^{\circ}$

2.1.2 Wall thickness

Table 1: Wall thickness and height of tiers

Component		Wall thickness	Height of tier
Roof		$s_{D}=15.0 \mathrm{~mm}$	
Cylinder	Tier 1	$s_{Z, 1}=10.0 \mathrm{~mm}$	$h_{Z, 1}=2710 \mathrm{~mm}$
	Tier 2	$s_{Z, 2}=15.0 \mathrm{~mm}$	$h_{Z, 2}=500 \mathrm{~mm}$
Bottom		$s_{B}=15.0 \mathrm{~mm}$	
			$h_{Z}=3210 \mathrm{~mm}$

2.1.3 Volume

Volume of the cylinder	$V_{Z}=14.52 \mathrm{~m}^{3}$
Volume of the conical roof	$V_{D}=0.48 \mathrm{~m}^{3}$
Total volume	$V_{t o t}=15.01 \mathrm{~m}^{3}$
Maximum usable volume	$V_{95 \%}=13.80 \mathrm{~m}^{3} \quad\left(=0.95 \times V_{Z}\right)$

2.2 Nozzles

2.2.1 Nozzles in the roof

The largest roof nozzle has an external diameter of $d_{A}=160 \mathrm{~mm}$. Additional roof nozzles have no effect on the structural analysis.

The necessary weakening coefficient required for the proof of stress of the conical roof (see section 6.1.2 is according to DVS 2205, equation (34):

$$
\begin{equation*}
v_{A}=\frac{0.75}{1+\frac{d_{A}}{2 \times \sqrt{\left(d+s_{D}\right) \times s_{D}}}}=\frac{0.75}{1+\frac{160}{2 \times \sqrt{(2400+15.0) \times 15.0}}}=0.528 \tag{1}
\end{equation*}
$$

For nozzles in the roof the following minimum wall thickness applies:

$$
\begin{array}{ll}
\min s_{N}=\operatorname{SDR} 17.6 & \text { for liquid-conveying pipe systems } \\
\min s_{N}=\operatorname{SDR} 51 & \text { for none liquid-conveying pipe systems }
\end{array}
$$

2.2.2 Nozzles in the cylinder

Dimensions

It means:
$d_{A}=$ Outer diameter of the nozzle
$s_{N}=$ Nozzle wall thickness
$s_{Z}=$ Cylinder wall thickness near the opening
$h_{N}=$ For distance of nozzle center from upper edge of tank bottom
$a_{N}=$ Welding thickness connection cylinder-nozzle, inside and outside
$l_{1}=$ Nozzle projection outside
$l_{2}=$ Nozzle projection inside
Minimum value for the nozzle projection:

$$
\begin{aligned}
& l_{1} \geq \sqrt{\left(d_{A}+s_{N}\right) \times s_{N}} \\
& l_{2} \geq s_{N}+a_{N}
\end{aligned}
$$

The dimensions are given in Table 2 on the following page.
The distance from the edge of the opening to a weld must be at least 100 mm .

weakening coefficient

The weakening coefficient v_{A} is required for the proof of stress of the cylinder (see section 6.2.1.

According to DVS 2205 for nozzles SDR $11\left(s_{N} \geq d_{A} / 11\right)$:

$$
\begin{equation*}
v_{A N, i}=\frac{0.75}{1+\frac{d_{A}}{2 \times \sqrt{\left(d+s_{Z}\right) \times s_{Z}}}} \quad \text { with } d=2400 \mathrm{~mm} \tag{2}
\end{equation*}
$$

Evaluation of the equation (1) is tabulary executed.
Table 2: Nozzles in the cylinder - dimensions and weakening coefficient
All dimensions in millimeters

No.	Designation	d_{A}	s_{N}	s_{Z}	h_{N}	a_{N}	l_{1}	l_{2}	$v_{A N, i}$
N1	D50	63	≥ 5.8	15.0	200	4.1	≥ 20	≥ 10	$0.643 *)$

*) Calculation for SDR 11

2.3 Overview drawing

The main dimensions of the tank are given in figure 1 .

Figure 1: Tank, all dimensions in millimetres

3 Material

3.1 Density

For PE 100 the following material density applies: $\rho=0.960 \mathrm{~g} / \mathrm{cm}^{3}$

3.2 Values depending on temperature

The material specific values depending on temperature are supplied in the following table. Moreover, the strength K and the E-Modulus E are dependent on load duration. It means:

$$
\begin{array}{ll}
K_{K}^{*} \text { and } E_{K} & \Rightarrow \text { short-term }=6 \text { minutes }= \\
K_{M}^{*} & \Rightarrow \text { medium-term }=3 \text { month }=2190 \text { hours (e.g. wind load) } \\
K_{L}^{*} \text { and } E_{L} & \Rightarrow \text { long-term }=25 \text { years }=219000 \text { hours (e.g. dead load) }
\end{array}
$$

For the various temperatures and load durations the given creep strengths K_{K}^{*}, K_{M}^{*} and K_{L}^{*} can be derived from Guideline DVS 2205-1, supplement 8
The design value of the resistance is obtained from the value of the characteristic strength divided by γ_{M}. With $\gamma_{M}=1.1$:

$$
\begin{equation*}
K_{K, d}^{*}=\frac{K_{K}^{*}}{1.1} \quad K_{M, d}^{*}=\frac{K_{M}^{*}}{1.1} \quad K_{L, d}^{*}=\frac{K_{L}^{*}}{1.1} \tag{3}
\end{equation*}
$$

The short-term E-Modulus E_{K} conforms to guideline DVS 2205-2, table 8.
The long-term E-Modulus E_{L} at $20^{\circ} \mathrm{C}$ conforms to guideline DVS 2205-2, table 9 .
The reduction factor A_{1} to allow for viscosity conforms to DIN EN 1778 , or alternatively, guideline DVS 2205-1, table 2 (here referred to as A_{4}).

Table 3: Values depending on temperature

${ }^{\circ} \mathrm{C}$	K_{K}^{*}	K_{M}^{*}	K_{L}^{*}	$K_{K, d}^{*}$	$K_{M, d}^{*}$	$K_{L, d}^{*}$	E_{K}	E_{L}	A_{1}
20.0	14.77	11.43	10.15	13.42	10.39	9.23	800	235	1.00
25.0	13.59	10.52	9.35	12.36	9.56	8.50	675		1.00
30.0	12.55	9.71	8.63	11.41	8.83	7.84	550		1.00
35.0	11.61	8.99	7.99	10.56	8.17	7.26	470		1.00

3.3 Reduction factor A2

The reduction factor for the influence of the storage liquid on the material, at a operating temperature of $T_{M}=20^{\circ} \mathrm{C}$:

$$
\begin{aligned}
& A_{2}=1.20 \quad \text { (for proof of stress, in the DIBt-List designated as } A_{2 B} \text {). } \\
& A_{2 I}=1.00 \quad \text { (for proof of stability) }
\end{aligned}
$$

3.4 Welding factors

3.4.1 Roof

Welding process for the radial weld in the conical roof: Hot gas extrusion welding

In accordance with DVS 2205-1: Welding factor, long term: $\quad f_{S}=0.60$
Welding factor, short term: $\quad f_{Z}=0.80$

3.4.2 Cylinder

The cylinder shell is constructed out of a wound cylinder or an extruded pipe.
The 'welding factor' therefore applies: Welding factor, long term: $\quad f_{S}=1.00$
Welding factor, short term: $f_{Z}=1.00$

4 Loadings

4.1 Dead weight

4.1.1 Weight of the roof

The following equivalent area load is allowed (e.g. for nozzles or similar) in the roof:

$$
g_{A}=0.00 \mathrm{kN} / \mathrm{m}^{2}
$$

Area load:

$$
\begin{align*}
& g_{D}=\frac{s_{D} \times \rho \times g \times 10^{-6}}{\sin \kappa}+g_{A} \times 10^{-3} \\
& g_{D}=\frac{15.0 \times 0.960 \times 9.81 \times 10^{-6}}{\sin 75.0}+0.00 \times 10^{-3}=0.00015 \mathrm{~N} / \mathrm{mm}^{2} \tag{4}
\end{align*}
$$

Total load:

$$
\begin{equation*}
G_{D}=g_{D} \times \frac{\pi \times d^{2}}{4}=0.00015 \times \frac{\pi \times 2400^{2}}{4}=661 \mathrm{~N} \tag{5}
\end{equation*}
$$

4.1.2 Weight of the cylinder

It means:

$$
\begin{aligned}
G_{Z, i} & =\text { Dead weight of tier } i \\
G_{Z, i} & =\pi \times\left(d+s_{Z, i}\right) \times h_{Z, i} \times s_{Z, i} \times \rho \times g \times 10^{-6} \\
G_{Z, i} & =\pi \times\left(2400+s_{Z, i}\right) \times h_{Z, i} \times s_{Z, i} \times 0.96 \times 9.81 \times 10^{-6} \\
\Sigma G_{Z, i} & =\text { Dead weight of cylinder down to lower edge of cylinder tier } i \\
\Sigma G_{Z, i}+G_{D} & =\text { Dead weight of tank down to lower edge of cylinder tier } i
\end{aligned}
$$

Table 4: Weight of the cylinder

tier i	Wall thickn. $s_{Z, i}$	Height tier $h_{Z, i}$	$G_{Z, i}$	$\Sigma G_{Z, i}$	$\Sigma G_{Z, i}+G_{D}$
1	10.0 mm	2710 mm	1932 N	1932 N	2593 N
2	15.0 mm	500 mm	536 N	2467 N	3129 N

The dead load of the cylinder is:
$G_{Z}=2467 \mathrm{~N}$

4.1.3 Weight of the bottom

For an approximate allowance of the bottom diameter, the dead weight calculated with the cylinder interior diameter is increased by 5 \% (factor 1.05).

$$
\begin{align*}
G_{B} & =\frac{\pi \times d^{2} \times s_{B} \times \rho \times g \times 10^{-6}}{4} \times 1.05 \\
G_{B} & =\frac{\pi \times 2400^{2} \times 15.0 \times 0.960 \times 9.81 \times 10^{-6}}{4} \times 1.05=639 \mathrm{~N} \tag{6}
\end{align*}
$$

4.1.4 Weight of the tank

$$
\begin{equation*}
G_{E}=G_{D}+G_{Z}+G_{B}=661+2467+639=3768 \mathrm{~N} \tag{7}
\end{equation*}
$$

4.2 Loadings from attachments

There are no loads from attachments (e.g. from tank-mounted platforms or agitators).

4.3 Overpressure and underpressure

Long-term overpressure and underpressure cannot occur since the tank is externally ventilated.

When a tank is mounted indoors with external ventilation inside the building, underpressure $p_{u S}$ from wind suction cannot occur.

Table 5: Overpressure and underpressure

	internal overpressure	internal underpressure
long-term	$p_{\ddot{u}}=0.00000 \mathrm{~N} / \mathrm{mm}^{2}$	$p_{u}=0.00000 \mathrm{~N} / \mathrm{mm}^{2}$
short-term	$p_{\ddot{u} K}=0.00050 \mathrm{~N} / \mathrm{mm}^{2}(5.0 \mathrm{mbar})$	$p_{u K}=0.00030 \mathrm{~N} / \mathrm{mm}^{2}(3.0 \mathrm{mbar})$
		$p_{u S}=0.00000 \mathrm{~N} / \mathrm{mm}^{2}$

4.4 Snow load

For indoor installation: $\quad p_{S}=0.0 \mathrm{~N} / \mathrm{mm}^{2}$

4.5 Wind load

For indoor installation: $\quad p_{e u}=0.0 \mathrm{~N} / \mathrm{mm}^{2}$

5 Axial stresses in the cylinder

For proof of the axial stability of the cylinder (see section 6.2.4), the axial compressive stresses at the lower edge of each cylinder tier are required.

5.1 Axial stresses from the individual load cases

from dead weight: $\quad \sigma_{G, i}=\frac{G_{D}+\Sigma G_{Z, i}}{\pi \times d \times s_{Z, i}}=\frac{G_{D}+\Sigma G_{Z, i}}{\pi \times 2400 \times s_{Z, i}}$
from
attachment-load:
$\sigma_{A, i}=$ not applicable
from
underpressure $\quad \sigma_{p u, i}=$ not applicable
long-term:
from
underpressure short-term:

$$
\sigma_{p u K, i}=\frac{p_{u K} \times d}{4 \times s_{Z, i}}=\frac{0.00030 \times 2400}{4 \times s_{Z, i}}
$$

from
underpressure
caused by wind

$$
\sigma_{p u K, i}=\text { not applicable }
$$

suction:
from snow load on the roof:

$$
\sigma_{S, i}=\frac{p_{S} \times d}{4 \times s_{Z, i}}=\frac{0.00068 \times 2400}{4 \times s_{Z, i}}
$$

from wind load: $\quad \sigma_{W, i}=$ not applicable
from earthquake: $\quad \sigma_{E, i}=$ not applicable

The Analysis of the equations is tabulary executed.

Table 6: Axial stresses from the individual load cases

Tier	$s_{Z, i}$	Axial stresses $\left[\mathrm{N} / \mathrm{mm}^{2}\right]$							
i	$[\mathrm{~mm}]$	$\sigma_{G, i}$	$\sigma_{A, i}$	$\sigma_{p u, i}$	$\sigma_{p u k, i}$	$\sigma_{p u S, i}$	$\sigma_{S, i}$	$\sigma_{W, i}$	$\sigma_{E, i}$
1	10.0	0.034	0.000	0.000	0.018	0.000	0.000	0.000	0.000
2	15.0	0.027	0.000	0.000	0.012	0.000	0.000	0.000	0.000

5.2 Axial stresses in the area of nozzles

In the area of nozzles the proof of the axial stability of the cylinder is to perform with the residual cross section values (taking into account the opening but excluding the nozzle).

See the DIBt Berechnungsempfehlung 40-B5.

5.3 Axial stresses from load combinations

5.3.1 Fundamental combinations of actions

LC 1: With underpressure

- LF 1.1: $\quad \Sigma \sigma_{i, d 1.1}=\gamma_{F 1} \times \sigma_{G, i}+\gamma_{F 2} \times\left(\max \left(\sigma_{p u K, i,}, \sigma_{p u S, i}\right)+0.7 \times \sigma_{S, i}+\frac{\sigma_{W, i}}{1.2}\right)$
- LF 1.2: $\quad \Sigma \sigma_{i, d 1.2}=\gamma_{F 1} \times \sigma_{G, i}+\gamma_{F 2} \times\left(\sigma_{p u K, i}+\sigma_{S, i}\right)$

LC 2: Without underpressure

-LF 2.1: $\quad \Sigma \sigma_{i, d 2.1}=\gamma_{F 1} \times \sigma_{G, i}+\gamma_{F 2} \times\left(0.7 \times \sigma_{S, i}+\frac{\sigma_{W, i}}{1.2}\right)$

- LF 2.2: $\quad \Sigma \sigma_{i, d 2.2}=\gamma_{F 1} \times \sigma_{G, i}+\gamma_{F 2} \times \sigma_{S, i}$
5.3.2 Combinations of actions for seismic design situations

LC 3: Earthquake not applicable

5.3.3 Analysis

Table 7: Axial stresses in the cylinder tiers, load combinations

Tier	Axial stresses $\Sigma \sigma_{i, d}$				
i	LF 1.1	LF 1.2	LF 2.1	LF 2.2	LF 3
1	0.073	0.073	0.046	0.046	-
2	0.055	0.055	0.037	0.037	-

6 Proofs

6.1 Proof of the conical roof

6.1.1 Minimum wall thickness

$$
\begin{align*}
& \min s_{D}=\frac{\delta_{D}}{1000} \times d=\frac{5.5}{1000} \times 2400=13.2 \mathrm{~mm} \tag{10}\\
& s_{D}=15.0 \mathrm{~mm} \geq \min s_{D}
\end{align*}
$$

This proof considers a load of $1 \mathrm{kN} / \mathrm{m}^{2}$ at $20^{\circ} \mathrm{C}$ short-term acting.

6.1.2 Proof of stresses (inward loadings)

Assumed values:

$$
\begin{align*}
A & =-0.000103 \times \alpha_{D}^{2}+0.007825 \times \alpha_{D}-1.7771 \\
& =-0.000103 \times 15^{2}+0.007825 \times 15-1.7771=-1.6829 \tag{11}
\end{align*}
$$

$$
\begin{align*}
B & =-0.000433 \times \alpha_{D}^{2}+0.008115 \times \alpha_{D}-0.1870 \\
& =-0.000433 \times 15^{2}+0.008115 \times 15-0.1870=-0.1627 \tag{12}
\end{align*}
$$

$\operatorname{Exp} 1=A \times \ln \left(\frac{2 \times s_{D}}{d}\right)+B=-1.6829 \times \ln \left(\frac{2 \times 15.0}{2400}\right)-0.1627=7.2118$
$\phi D_{1}=\mathrm{e}^{E x p 1} \times A_{2} \times \gamma_{I}=\mathrm{e}^{7.2118} \times 1.20 \times 1.20=1952$
$\phi D_{2}=0.5 \times \frac{d}{s_{D}} \times \frac{A_{2} \times \gamma_{I}}{\cos \kappa}=0.5 \times \frac{2400}{15.0} \times \frac{1.20 \times 1.20}{\cos 75}=445$

Calculation of the stresses in the following sections applies to the...
...welding seam: According to DVS 2205-2, section 4.1.6.1, equations (27) to (29)
...opening: According to DVS 2205-2, section 4.1.7, equation (35)

Long-term loading

$$
\begin{equation*}
p_{D L, d}=\gamma_{F 1} \times g_{D}+\gamma_{F 2} \times p_{u}=1.35 \times 0.00015+1.50 \times 0.00000=0.00020 \mathrm{~N} / \mathrm{mm}^{2} \tag{16}
\end{equation*}
$$

The effective temperature is $T_{D}=25.0^{\circ} \mathrm{C} \Rightarrow A_{1}=1.00$
Stresses in the area of the welding seam:

$$
\begin{equation*}
K_{L, d}=\frac{p_{D L, d} \times A_{1} \times \phi D_{1}}{f_{s D}}=\frac{0.00020 \times 1.00 \times 1952}{0.60}=0.64 \mathrm{~N} / \mathrm{mm}^{2} \tag{17}
\end{equation*}
$$

Stresses in the area of the opening:

$$
\begin{equation*}
K_{L, d}=\frac{p_{D L, d} \times A_{1} \times \phi D_{2}}{v_{A}}=\frac{0.00020 \times 1.00 \times 445}{0.528}=0.17 \mathrm{~N} / \mathrm{mm}^{2} \tag{18}
\end{equation*}
$$

Medium-term loading A medium-term strain is not present when the tank is set up indoors.

Short-term loading

$$
\begin{gather*}
p_{u K}=0.00030 \mathrm{~N} / \mathrm{mm}^{2} \\
p_{u S}=0.00000 \mathrm{~N} / \mathrm{mm}^{2} \tag{19}\\
p_{D K}=\max \left(p_{u K}, p_{u S}\right) \quad=0.00030 \mathrm{~N} / \mathrm{mm}^{2} \\
\Sigma p_{D K, d}=\gamma_{F 1} \times g_{D}+\gamma_{F 2} \times p_{D K}=1.35 \times 0.00015+1.50 \times 0.00030=0.00065 \mathrm{~N} / \mathrm{mm}^{2} \tag{20}
\end{gather*}
$$

The effective temperature is $\quad T_{D K}=35.0^{\circ} \mathrm{C} \quad \Rightarrow \quad A_{1}=1.00$
Stresses in the area of the welding seam:

$$
\begin{equation*}
\Sigma K_{K, d}=\frac{\Sigma p_{D K, d} \times A_{1} \times \phi D_{1}}{f_{z D}}=\frac{0.00065 \times 1.00 \times 1952}{0.80}=1.58 \mathrm{~N} / \mathrm{mm}^{2} \tag{21}
\end{equation*}
$$

Stresses in the area of the opening:

$$
\begin{equation*}
\Sigma K_{K, d}=\frac{\Sigma p_{D K, d} \times A_{1} \times \phi D_{2}}{v_{A}}=\frac{0.00065 \times 1.00 \times 445}{0.528}=0.55 \mathrm{~N} / \mathrm{mm}^{2} \tag{22}
\end{equation*}
$$

Proofs for the conical roof in the area around the welding seam:
Proof 1 according to DVS 2205-2, equation (13):

$$
\eta_{1}=\frac{K_{L, d}}{\underbrace{K_{L, d}^{*}}_{25,0^{\circ \mathrm{C}}}}+\frac{K_{M, d}}{K_{M, d}^{*}}=\frac{0.64}{8.50}+0.00=0.076 \quad<1,0 \quad \Rightarrow \quad \text { Proof supplied }
$$

Proof 2 according to DVS 2205-2, equation (15):

$$
\eta_{2}=\frac{\frac{K_{K, d}}{K_{K, d}^{*}}}{\underbrace{*}_{35.0^{\circ} \mathrm{C}}}=\frac{1.58}{10.56}=0.150 \quad<1,0
$$

Proof supplied

Proofs for the conical roof in the area around the opening:
Proof 1 according to DVS 2205-2, equation (13):

$$
\eta_{1}=\frac{K_{L, d}}{K_{L, d}^{*}}+\frac{K_{M, d}}{K_{M, d}^{*}}=\frac{0.17}{8.50}+0.00=0.020 \quad<1,0 \quad \Rightarrow \quad \text { Proof supplied }
$$

Proof 2 according to DVS 2205-2, equation (15):

$$
\eta_{2}=\frac{\frac{K_{K, d}}{K_{K, d}^{*}}}{\underbrace{*}_{35.0^{\circ} \mathrm{C}}}=\frac{0.55}{10.56}=0.052 \quad<1,0
$$

Proof supplied

6.1.3 Proof of stresses (outward loadings)

Assumed values:

$$
\begin{align*}
C & =1.30 \times 10^{-5} \times \alpha_{D}^{2}-0.00097 \times \alpha_{D}-1.4054 \\
& =1.30 \times 10^{-5} \times 15^{2}-0.00097 \times 15-1.4054=-1.4170 \tag{23}\\
D & =0.000265 \times \alpha_{D}^{2}-0.04574 \times \alpha_{D}+1.5622 \\
& =0.000265 \times 15^{2}-0.04574 \times 15+1.5622=0.9357 \tag{24}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Exp} 2=C \times \ln \left(\frac{2 \times s_{D}}{d}\right)+D=-1.4170 \times \ln \left(\frac{2 \times 15.0}{2400}\right)+0.9357=7.1452 \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\phi D_{2}=445 \quad \text { (see section 6.1.1) } \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\phi D_{3}=\mathrm{e}^{E x p 2} \times A_{2} \times \gamma_{I}=\mathrm{e}^{7.1452} \times 1.20 \times 1.20=1826 \tag{27}
\end{equation*}
$$

Long-term loading

$$
\begin{equation*}
p_{D L, d}=\gamma_{F 2} \times p_{i u}-\gamma_{F 3} \times g_{D}=1.50 \times 0.00000-0.90 \times 0.00015<0.0 \mathrm{~N} / \mathrm{mm}^{2} \tag{28}
\end{equation*}
$$

The effective temperature is $T_{D}=25.0^{\circ} \mathrm{C} \quad \Rightarrow \quad A_{1}=1.00$
Stresses in the area of the conical roof:

$$
\begin{equation*}
K_{L, d}=p_{D L, d} \times A_{1} \times \phi D_{3}=0.00000 \times 1.00 \times 1826=0.00 \mathrm{~N} / \mathrm{mm}^{2} \tag{29}
\end{equation*}
$$

Stresses in the area of the opening:

$$
\begin{equation*}
K_{L, d}=\frac{p_{D L, d} \times A_{1} \times \phi D_{2}}{v_{A}}=\frac{-0.00013 \times 1.00 \times 445}{0.528}=0.00 \mathrm{~N} / \mathrm{mm}^{2} \tag{30}
\end{equation*}
$$

Medium-term loading A medium-term strain is not present when the tank is set up indoors.

Short-term loading

$$
\begin{equation*}
\Sigma p_{D K, d}=\gamma_{F 2} \times p_{i k}-\gamma_{F 3} \times g_{D}=1.50 \times 0.00050-0.90 \times 0.00015=0.00062 \mathrm{~N} / \mathrm{mm}^{2} \tag{31}
\end{equation*}
$$

The effective temperature is $T_{D K}=35.0^{\circ} \mathrm{C} \quad \Rightarrow \quad A_{1}=1.00$
Stresses in the area of the conical roof:

$$
\begin{equation*}
\Sigma K_{K, d}=\Sigma p_{D K, d} \times A_{1} \times \phi D_{3}=0.00062 \times 1.00 \times 1826=1.13 \mathrm{~N} / \mathrm{mm}^{2} \tag{32}
\end{equation*}
$$

Stresses in the area of the opening:

$$
\begin{equation*}
\Sigma K_{K, d}=\frac{\Sigma p_{D K, d} \times A_{1} \times \phi D_{2}}{v_{A}}=\frac{0.00062 \times 1.00 \times 445}{0.528}=0.52 \mathrm{~N} / \mathrm{mm}^{2} \tag{33}
\end{equation*}
$$

Proofs for the conical roof:
Proof 1 according to DVS 2205-2, equation (13):

$$
\eta_{1}=\frac{K_{L, d}}{K_{L, d}^{*}}+\frac{K_{M, d}}{K_{M, d}^{*}}=0.00+0.00=0.000 \quad<1,0 \quad \Rightarrow \quad \text { Proof supplied }
$$

Proof 2 according to DVS 2205-2, equation (15):

$$
\eta_{2}=\frac{K_{K, d}}{\underbrace{K_{K, 0^{\circ} \mathrm{C}}^{*}}_{K, d}}=\frac{1.13}{10.56}=0.107 \quad<1,0
$$

$\underline{\text { Proofs for the conical roof in the area around the opening: }}$
Proof 1 according to DVS 2205-2, equation (13):

$$
\eta_{1}=\frac{K_{L, d}}{K_{L, d}^{*}}+\frac{K_{M, d}}{K_{M, d}^{*}}=0.00+0.00=0.000 \quad<1,0
$$

Proof supplied

Proof 2 according to DVS 2205-2, equation (15):

$$
\eta_{2}=\frac{K_{K, d}}{\sqrt{K_{K, d}^{*}}}=\frac{0.52}{10.56}=0.049<1,0
$$

\Rightarrow Proof supplied

6.1.4 Proof of stability

Assumed values:

$$
\begin{align*}
\phi D_{3} & =\frac{d}{4 \times \cos \kappa \times s_{D}}=\frac{2400}{4 \times \cos 75 \times 15.0}=154.5 \tag{34}\\
\phi D_{4} & =\frac{2.68}{\gamma_{M}} \times \sin \kappa \times \sqrt{\cos \kappa} \times\left(\frac{s_{D}}{d}\right)^{1.5} \\
\phi D_{4} & =\frac{2.68}{1.10} \times \sin 75 \times \sqrt{\cos 75} \times\left(\frac{15.0}{2400}\right)^{1.5}=0.000592 \tag{35}
\end{align*}
$$

The following applies for indoor installation:

$$
\begin{aligned}
& \text { The effective temperature is } \quad T_{D K}=35.0^{\circ} \mathrm{C} \\
& \text { Short-term E-Modulus: } \quad E_{K}=470 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Loading: } \quad \Sigma p_{D K, d}=0.00065 \mathrm{~N} / \mathrm{mm}^{2} \quad \text { see equation } 20 \\
& \text { Existing stress: } \quad \Sigma \sigma_{d}=\Sigma p_{D K, d} \times \phi D_{3}=0.00065 \times 154.5=0.1000 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Critical stress: } \quad \sigma_{k, d}=E_{K} \times \phi D_{4}=470 \times 0.000592=0.2780 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Proof according to DVS 2205-2, equation (56):

$$
\eta=\frac{A_{2 I} \times \gamma_{I} \times \Sigma \sigma_{d}}{\sigma_{k, d}}=\frac{1.00 \times 1.20 \times 0.1000}{0.2780}=0.432 \quad<1,0 \quad \Rightarrow \quad \text { Proof supplied }
$$

6.2 Proof of the cylindrical shell

6.2.1 Stress in the circumference direction

The proof of stress of the cylinder in the circumference direction is carried out according to DVS 2205-2, section 4.1.3.1. The cylinder shell is constructed out of a wound cylinder or an extruded pipe. A proof of the outer fibre expansion according to DVS 2205-2, table 1 , is therefore not necessary. Assumed value:

$$
\begin{equation*}
\phi Z_{1}=0.5 \times d \times A_{2} \times \gamma_{I}=0.5 \times 2400 \times 1.20 \times 1.20=1728 \mathrm{~mm} \tag{36}
\end{equation*}
$$

The existing circumference tension in the cylinder at the bottom edge of a cylinder tier i is:

$$
\begin{align*}
& \text { long-term: } \begin{aligned}
K_{L, d, i} & =\frac{\gamma_{F 1} \times p_{\text {stat }, i}+\gamma_{F 2} \times p_{\ddot{u}}}{s_{Z, i} \times f_{s}} \times A_{1} \times \phi Z_{1} \\
& =\frac{1.35 \times p_{\text {stat }, i}+1.50 \times 0.00000}{s_{Z, i} \times 1.0} \times A_{1} \times 1728 \\
\text { short-term: } \quad \Sigma K_{K, d, i} & =\frac{\gamma_{F 1} \times p_{\text {stat }, i}+\gamma_{F 2} \times p_{\ddot{u} K}}{s_{Z, i} \times f_{z}} \times A_{1} \times \phi Z_{1} \\
& =\frac{1.35 \times p_{\text {stat }, i}+1.50 \times 0.00050}{s_{Z, i} \times 1.0} \times A_{1} \times 1728
\end{aligned}
\end{align*}
$$

The existing circumference tension in the cylinder at the bottom edge of a nozzle is:

$$
\begin{align*}
\text { long-term: } \quad K_{L, d, i} & =\frac{\gamma_{F 1} \times p_{\text {stat }, i}+\gamma_{F 2} \times p_{\ddot{u}}}{s_{Z, i} \times v_{A, \mathrm{~N} i}} \times A_{1} \times \phi Z_{1} \\
& =\frac{1.35 \times p_{\mathrm{stat}, i}+1.50 \times 0.00000}{s_{Z, i} \times v_{A, \mathrm{~N} i}} \times A_{1} \times 1728 \tag{39}\\
\text { short-term: } \Sigma K_{K, d, i} & =\frac{\gamma_{F 1} \times p_{\text {stat }, i}+\gamma_{F 2} \times p_{\ddot{u} K}}{s_{Z, i} \times v_{A, \mathrm{~N} i}} \times A_{1} \times \phi Z_{1} \\
& =\frac{1.35 \times p_{\text {stat }, i}+1.50 \times 0.00050}{s_{Z, i} \times v_{A, \mathrm{~N} i}} \times A_{1} \times 1728 \tag{40}
\end{align*}
$$

Strains due to influences of medium effect duration do not arise for this proof.
The overpressure from the storage liquid is determined as follows:

$$
\begin{aligned}
p_{\text {stat }, i}= & \rho_{F} \times g \times h_{F, i} \times 10^{-6}=1.500 \times 9.81 \times h_{F, i} \times 10^{-6} \\
h_{F, i}= & \text { Height of the liquid level above the bottom edge of cylinder tier } i \\
& \text { or alternatively above the bottom edge of the nozzle. }
\end{aligned}
$$

All cylinder tiers bottom edges and nozzle bottom edges are located below the maximum liquid level.

For these cylinder tiers the effective temperature is

$$
\begin{array}{ll}
\text { long-term: } & T_{Z}=20.0^{\circ} \mathrm{C} \quad \Rightarrow \quad A_{1}=1.00 \\
\text { short-term: } & T_{Z K}=30.0^{\circ} \mathrm{C} \quad \Rightarrow \quad A_{1}=1.00
\end{array}
$$

Evaluation of the equations follows in table form.

tier i	$s_{Z, i}$ mm	Region	$v_{A N, i}$	$h_{F, i}$ mm	$p_{s t a t, i}$ $\mathrm{~N} / \mathrm{mm}^{2}$	$K_{L, d, i}$ $\mathrm{~N} / \mathrm{mm}^{2}$	$\Sigma K_{K, d, i}$ $\mathrm{~N} / \mathrm{mm}^{2}$
1	10.0	Bottom edge	-	2154	0.03168	7.39	7.52
2	15.0	Nozzle N1	0.643	2485	0.03656	8.84	8.97
		Bottom edge	-	2654	0.03904	6.07	6.16

The two following proofs are accomplished with the maximum value according to the table.

Proof 1 according to DVS 2205-2, equation (13):

$$
\eta_{1}=\frac{K_{L, d}}{\sqrt{K_{L, d}^{*}}}+\frac{K_{M, d}}{K_{M, d}^{*}}=\frac{8.84}{9.23}+0.00=0.957 \quad<1,0 \quad \Rightarrow \text { Proof supplied }
$$

Proof 2 according to DVS 2205-2, equation (15):

$$
\eta_{2}=\frac{\frac{K_{K, d}}{K_{K, d}^{*}}}{\sqrt[30.0^{\circ} \mathrm{C}]{3.97}}=\frac{8.97}{11.41}=0.786 \quad<1,0
$$

\Rightarrow Proof supplied

6.2.2 Proof of stress in the longitudinal direction

Proof of stress of the cylinder in the longitudinal direction according to DVS 2205-2, section 4.1.3.2 only for the transition point between cylinder and bottom.

The factor C according to DVS 2205-2, table 4, is:

$$
C=1.20
$$

The effective temperature is

$$
\begin{array}{ll}
\text { long-term: } & T_{Z}=20.0^{\circ} \mathrm{C} \Rightarrow A_{1}=1.00 \\
\text { short-term: } & T_{Z K}=30.0^{\circ} \mathrm{C} \Rightarrow A_{1}=1.00
\end{array}
$$

The existing long-term tensile stress at the lower edge of the cylinder is equal to

$$
\begin{align*}
K_{L, d}= & \left(C \times\left(\gamma_{F 1} \times p_{s t a t}+\gamma_{F 2} \times p_{\ddot{i}}\right) \times \frac{d}{2}+\gamma_{F 2} \times p_{\ddot{u}} \times \frac{d}{4}\right. \tag{41}\\
& \left.-\frac{\gamma_{F 3} \times\left(G_{D}+G_{Z}\right)}{\pi \times d}\right) \times \frac{A_{1} \times A_{2} \times \gamma_{I}}{s_{Z F}} \\
= & \left(1.20 \times(1.35 \times 0.03904+1.50 \times 0.00) \times \frac{2400}{2}+1.50 \times 0.00 \times \frac{2400}{4}\right. \\
& \left.-\frac{0.90 \times(661+2467)}{\pi \times 2400}\right) \times \frac{1.00 \times 1.20 \times 1.20}{15.0} \\
= & (75.89+0.00-0.37) \times 0.096=7.25 \mathrm{~N} / \mathrm{mm}^{2}
\end{align*}
$$

Strains due to influences of medium effect duration do not arise for this proof.

$$
\begin{equation*}
K_{M, d}=0.00 \mathrm{~N} / \mathrm{mm}^{2} \tag{42}
\end{equation*}
$$

The existing short-term tensile stress at the lower edge of the cylinder is equal to

$$
\begin{align*}
\Sigma K_{K, d}= & \left(C \times\left(\gamma_{F 1} \times p_{\text {stat }}+\gamma_{F 2} \times p_{\ddot{u} k}\right) \times \frac{d}{2}+\gamma_{F 2} \times p_{\ddot{u} k} \times \frac{d}{4}\right. \tag{43}\\
& \left.+\frac{4 \times \gamma_{F 2} \times M_{W} \times 10^{3}}{\pi \times d^{2}}-\frac{\gamma_{F 3} \times\left(G_{D}+G_{Z}\right)}{\pi \times d}\right) \times \frac{A_{1} \times A_{2} \times \gamma_{I}}{s_{Z F}} \\
= & \left(1.20 \times(1.35 \times 0.03904+1.50 \times 0.00050) \times \frac{2400}{2}+1.50 \times 0.00050 \times \frac{2400}{4}\right. \\
& \left.+\frac{4 \times 1.50 \times 0 \times 10^{3}}{\pi \times 2400^{2}}-\frac{0.90 \times(661+2467)}{\pi \times 2400}\right) \times \frac{1.00 \times 1.20 \times 1.20}{15.0} \\
= & (76.97+0.45+0.00-0.37) \times 0.096=7.40 \mathrm{~N} / \mathrm{mm}^{2}
\end{align*}
$$

Proof 1 according to DVS 2205-2, equation (13):

$$
\eta_{1}=\frac{K_{L, d}}{\sqrt{20.0^{\circ} \mathrm{C}}}+\frac{K_{M, d}^{*}}{K_{M, d}^{*}}=\frac{7.25}{9.23}+0.00=0.785 \quad<1,0
$$

Proof supplied

Proof 2 according to DVS 2205-2, equation (15):

$$
\eta_{2}=\frac{K_{K, d}}{\underbrace{K_{K, d}^{*}}_{K, d}}=\frac{7.40}{11.41}=0.648 \quad<1,0
$$

\Rightarrow Proof supplied

For calculating the minimum wall thickness of the bottom plate (see section 6.3.1), the minimum required cylinder wall thickness at the transition point with the bottom plate is needed:

By converting the DVS Guideline equation (22a) and (22b) we obtain:

$$
\begin{align*}
& s_{Z F, L}^{*}=\frac{K_{L, d}}{K_{L, d}^{*}} \times s_{Z F}=\frac{7.25}{9.23} \times 15.0=11.8 \mathrm{~mm} \\
& s_{Z F, K}^{*}=\frac{K_{K, d}^{*}}{K_{K, d}^{*}} \times s_{Z F}=\frac{7.40}{11.41} \times 15.0=9.7 \mathrm{~mm} \\
& s_{Z F}^{*}=\max \left(s_{Z F, L}, s_{Z F, K}\right)=11.8 \mathrm{~mm} \tag{44}
\end{align*}
$$

6.2.3 Casing compressive stability

The proof of stability in the circumference direction for the cylinder with tired walls thickness is performed acc. DIN 18800-4 on an equivalent cylinder with three tiers.

For the equivalent cylinder with three tiers applies:

	Fictitious tier length	Fictitious wall thickness	
above	$l_{o}=1605 \mathrm{~mm}$	$s_{o}=$	10.0 mm
mean	$l_{m}=802 \mathrm{~mm}$	$s_{m}=$	10.0 mm
bottom	$l_{u}=802 \mathrm{~mm}$	$s_{u}=$	13.1 mm

Ratio values:

$$
\begin{align*}
& \frac{l_{o}}{l}=\frac{1605}{3210}=0.50 \tag{45a}\\
& \frac{s_{m}}{s_{o}}=\frac{10.0}{10.0}=1.00 \tag{45b}\\
& \frac{s_{u}}{s_{o}}=\frac{13.1}{10.0}=1.31 \tag{45c}
\end{align*}
$$

The following can be read from diagram 20 of DIN 18800-4:

$$
\begin{equation*}
\beta=0.54 \tag{46}
\end{equation*}
$$

The relevant underpressure can be determined from the following underpressures:

$$
\begin{align*}
p_{u K} & =0.00030 \mathrm{~N} / \mathrm{mm}^{2} \\
p_{u}+p_{u S}+p_{e u} & =0.00000+0.00000+0.00000=0.00000 \mathrm{~N} / \mathrm{mm}^{2} \\
p_{u, \max } & =\max \left(p_{u K}, p_{u}+p_{u S}+p_{e u}\right)=0.00030 \mathrm{~N} / \mathrm{mm}^{2} \tag{47}\\
\Sigma p_{d} & =\gamma_{F 2} \times p_{u, \max }=1.50 \times 0.00030=0.00045 \mathrm{~N} / \mathrm{mm}^{2} \tag{48}
\end{align*}
$$

The critical shell pressure of the equivalent cylinder with three tiers is for $T_{Z K, o}=35.0^{\circ} \mathrm{C}$

$$
\begin{align*}
p_{k M, d} & =0.67 \times \beta \times C^{*} \times \frac{E_{K} \times r}{\gamma_{M} \times l_{o}} \times\left(\frac{s_{o}}{r}\right)^{2.5} \\
& =0.67 \times 0.54 \times 1.0 \times \frac{470 \times 1200}{1.10 \times 1605} \times\left(\frac{10.0}{1200}\right)^{2.5}=0.00073 \mathrm{~N} / \mathrm{mm}^{2} \tag{49}
\end{align*}
$$

$$
C^{*}=1.0 \text { applies to the tank with roof }
$$

Proof according to DVS 2205-2, equation (50):

$$
\eta_{M}=\frac{A_{2 I} \times \gamma_{I} \times \Sigma p_{d}}{p_{k M, d}}=\frac{1.00 \times 1.20 \times 0.00045}{0.00073}=0.739 \quad<1,0 \Rightarrow \quad \text { Proof supplied }
$$

6.2.4 Axial stability of the shell

The proof of stability in axial direction is performed according to DVS 2205-2 section 4.2.2.1 at the bottom edge of each cylinder tier.

Auxiliary value per DVS 2205-2, equation (48):

$$
\begin{equation*}
\alpha_{i}=\frac{0.7}{\sqrt{\frac{E_{K}^{20^{\circ} \mathrm{C}}}{E_{L}{ }^{20^{\circ} \mathrm{C}}} \times\left(1+\frac{r}{100 \times s_{Z, i}}\right)}}=\frac{0.7}{\sqrt{\frac{800}{235} \times\left(1+\frac{1200}{100 \times s_{Z, i}}\right)}} \tag{50}
\end{equation*}
$$

The buckling stress is calculated for the temperature $T_{Z K, o}=35.0^{\circ} \mathrm{C}$

$$
\begin{equation*}
\sigma_{k, i, d}=\alpha_{i} \times 0.62 \times \frac{E_{K} \times s_{Z, i}}{\gamma_{M} \times r}=\alpha_{i} \times 0.62 \times \frac{470 \times s_{Z, i}}{1.10 \times 1200} \quad \leq K_{K, d}^{*} \tag{51}
\end{equation*}
$$

The following condition must be observed for each tier:

$$
\begin{equation*}
\eta_{A, i}=\frac{A_{2 I} \times \gamma_{I} \times \Sigma \sigma_{i, d}}{\sigma_{k, i, d}}=\frac{1.00 \times 1.20 \times \sigma_{i, d}}{\sigma_{k, i, d}} \leq 1.0 \tag{52}
\end{equation*}
$$

with $\Sigma \sigma_{i, d}$ from section 5.3 .3 , load case 1 (max. value from LC 1.1 and LC 1.2)

i	$s_{Z, i}$	α_{i}	$\sigma_{k, i, d}$ $\mathrm{~N} / \mathrm{mm}^{2}$	$\sigma_{i, d}$ $\mathrm{~N} / \mathrm{mm}^{2}$	Proof according to DVS 2205-2, equation (49)	
1	10.0	0.256	0.565	0.073	$\eta_{A, 1}=0.155<1,0 \Rightarrow$ Proof supplied	
2	15.0	0.283	0.936	0.055	$\eta_{A, 2}=0.070<1,0 \Rightarrow$ Proof supplied	

6.2.5 Axial stability in the area of nozzles

The following calculation is performed for the nozzle N1. Outer diameter of the nozzle: $d_{A}=63 \mathrm{~mm}$

This nozzle is located in cylinder tier 2 . The wall thickness of the cylinder is here $s_{Z, 2}=$ 15 mm .

Ratio value $=\frac{d_{A}}{\sqrt{r \times s_{Z, 2}}}=\frac{63}{\sqrt{1200 \times 15}}=0.47$
For a ratio value ≤ 3.50 the reduction factor is:

$$
\begin{equation*}
\alpha_{N 1}=\frac{0.65}{\sqrt{\frac{E_{K}^{20^{\circ} \mathrm{C}}}{E_{L}^{20^{\circ} \mathrm{C}}} \times\left(1+\frac{r}{100 \times s_{Z, 2}}\right)}}=\frac{0.65}{\sqrt{\frac{800}{235} \times\left(1+\frac{1200}{100 \times 15}\right)}}=0.263 \tag{54}
\end{equation*}
$$

The buckling stress is calculated for the temperature $T_{Z K, o}=35.0^{\circ} \mathrm{C}$

$$
\begin{equation*}
\sigma_{k, N 1, d}=\alpha \times 0.62 \times \frac{E_{K} \times s_{Z, 2}}{\gamma_{M} \times r}=0.263 \times 0.62 \times \frac{470 \times 15.0}{1.10 \times 1200}=0.870 \mathrm{~N} / \mathrm{mm}^{2} \leq K_{K, d}^{*} \tag{55}
\end{equation*}
$$

Proof according to DVS 2205-2 equation (49):

$$
\eta_{A}=\frac{A_{2 I} \times \gamma_{I} \times \Sigma \sigma_{i, d}}{\sigma_{k, d}}=\frac{1.00 \times 1.20 \times 0.056}{0.870}=0.078 \quad<1,0 \quad \Rightarrow \quad \text { Proof supplied }
$$

with $\Sigma \sigma_{i, d}$ from section 5.3 .3 , load case 1 (max. value from LC 1.1 and LC 1.2)

6.2.6 Interaction casing compressive stability / axial stability

For the proof of interaction the utilization without consideration of the axial stresses resulting from underpressure (i.e. without consideration of $p_{u}, p_{u K}, p_{u S}$ and $p_{e u}$) is required.

$$
\begin{equation*}
\eta_{A, i}=\frac{A_{2 I} \times \gamma_{I} \times \Sigma \sigma_{i, d}}{\sigma_{k, i, d}}=\frac{1.00 \times 1.20 \times \sigma_{i, d}}{\sigma_{k, i, d}} \tag{56}
\end{equation*}
$$

with $\Sigma \sigma_{d}$ from section 6.2.1, load case 2 (max. value from LC 2.1 and LC 2.2) The following condition must be observed for each tier:

$$
\begin{equation*}
\eta_{i}=\eta_{A, i}^{1.25}+\eta_{M}^{1.25} \leq 1.0 \quad \text { with } \eta_{M} \text { from section 6.2.2 } \tag{57}
\end{equation*}
$$

Evaluation of the equations follows in table form ($\sigma_{k, i, d}$ see section 6.2.4).

i	$\sigma_{k, i, d}$ $\mathrm{~N} / \mathrm{mm}^{2}$	$\Sigma \sigma_{i, d}$ $\mathrm{~N} / \mathrm{mm}^{2}$	$\eta_{A, i}$	η_{M}	Proof according to DVS 2205-2, equation (53)
1	0.565	0.046	0.098	0.739	$\eta_{1}=0.740<1,0 \Rightarrow$ Proof supplied
2	0.936	0.037	0.048	0.739	$\eta_{2}=0.708<1,0 \Rightarrow$ Proof supplied

6.3 Proof of the bottom plate

6.3.1 Proof for the load case filling

The bottom plate and the cylinder are connected with fillet welds. The proof of the bottom for this load case is performed according to DVS 2205 section 4.1.4.1.
The relation between cylinder radius and minimum required cylinder wall thickness is:

$$
\begin{equation*}
\frac{d}{s_{Z F}^{*}}=\frac{2400}{11.8}=204 \quad\left(s_{Z F}^{*} \text { see section 6.2.2 }\right) \tag{58}
\end{equation*}
$$

The diagram (DVS 2205-2, figure 7) can be interpreted as follows:

$$
\delta_{B}=0.80
$$

Proof according to DVS 2205-2, section 4.1.4.1: (with exist $s_{B}=15.0 \mathrm{~mm}$)

$$
\begin{array}{lll}
\min s_{B}=\delta_{B} \times s_{Z F}^{*}=0.80 \times 11.8 & =9.4 \mathrm{~mm} & \leq \operatorname{vorh} s_{B} \Rightarrow \text { Proof supplied } \\
\max s_{B}= & s_{Z F} & =15.0 \mathrm{~mm}
\end{array} \geq \operatorname{vorh} s_{B} \Rightarrow \text { Proof supplied }
$$

6.3.2 Proof of non-anchored tanks with overpressure

This proof according to DVS 2205-2, section 4.1.4.2.
The effective overpressure for this proof is:

$$
\begin{array}{ll}
p_{\dot{u}} & =0.00000 \mathrm{~N} / \mathrm{mm}^{2} \\
p_{i u K} & =0.00050 \mathrm{~N} / \mathrm{mm}^{2} \\
p_{1} & =\max \left(p_{\dot{u}}, p_{i u K}\right)=0.00050 \mathrm{~N} / \mathrm{mm}^{2}
\end{array}
$$

Proof of stress (equations (24) to (24c) of the Guideline DVS 2205-2)

$$
\begin{array}{ll}
\delta_{\sigma} & =1.50 \quad \text { (Indoor installation) } \\
n_{Z, d} & =0.077 \mathrm{~N} / \mathrm{mm} \\
l_{B} & =13771 \mathrm{~mm} \\
p_{B, k} & =-1.252193 \times 10^{-5} \mathrm{~N} / \mathrm{mm}^{2} \\
h_{R F, \sigma} & =-44 \mathrm{~mm}
\end{array}
$$

Limitation of hoisting (equations (25) to (25c) of the Guideline DVS 2205-2)

```
\(\delta_{w}=0.56 \quad\) (Indoor installation)
\(n_{Z} \quad=-0.073 \mathrm{~N} / \mathrm{mm} \Rightarrow n_{Z}\) is negative. Further calculation is not necessary.
\(l_{B}=0 \mathrm{~mm}\)
\(p_{B}=0.000000 \mathrm{~N} / \mathrm{mm}^{2}\)
\(h_{R F, w}=0 \mathrm{~mm}\)
```

The residual height of the filling level results for this proof:

$$
h_{R F}=\max \left(h_{R F, \sigma}, h_{R F, w}\right)=0 \mathrm{~mm}
$$

The deciding factor for determination of the residual height of the filling level is the proof of inner underpressure.

6.3.3 Proof for internal underpressure

The effective underpressure for this proof is according to equation (47):

$$
p_{u, \max }=0.00030 \mathrm{~N} / \mathrm{mm}^{2}
$$

The bottom dead weight is:

$$
\begin{equation*}
g_{B}=s_{B} \times \rho \times g \times 10^{-6}=15.0 \times 0.960 \times 9.81 \times 10^{-6}=0.00014 \mathrm{~N} / \mathrm{mm}^{2} \tag{59}
\end{equation*}
$$

The residual height of the filling level in the tank is calculated as follows:

$$
\begin{align*}
h_{R F} & =\frac{\gamma_{F 2} \times p_{u, \max }-\gamma_{F 3} \times g_{B}}{\gamma_{F 3} \times \rho \times g \times 10^{-6}} \tag{60}\\
& =\frac{1.50 \times 0.00030-0.90 \times 0.00014}{0.90 \times 1.500 \times 9.81 \times 10^{-6}}=24 \mathrm{~mm}
\end{align*}
$$

The proof is assumed to have been provided when the above-mentioned value for $h_{R F}$ is not exceeded.

6.4 Proof of the anchorage

Eine zusätzliche Verankerung des Behälters ist nicht erforderlich, da ...
a) the hoisting of the cylinder resulting from overpressure is not higher than the limiting value $w_{\text {limit }}=10 \mathrm{~mm}$ (proof of deformation),
b) the bending load of the bottom resulting from overpressure can be absorbed safely (proof of stress),
c) there can be no overturning moment from wind loads when the tank is installed indoors.

The proofs mentioned in a) and b) see section 6.3.2.

6.5 Proof of the lifting lugs

2 lifting lugs are mounted on the tank in accordance with DVS 2205-2, figure 11. A parallel lifter (tie-bar) will be used to lift the tank.

The 1.5x load (impact coefficient) on each lifting lug amounts to

$$
\begin{equation*}
F=\frac{1.5 \times \gamma_{F 1} \times G_{E}}{2}=\frac{1.5 \times 1.35 \times 3768}{2}=3815 \mathrm{~N} \tag{61}
\end{equation*}
$$

It can be demonstrated that this load is temporarily sustainable up to $20^{\circ} \mathrm{C}$. In this case $\gamma_{I}=1.20$ is applicable, regardless of later load case.
The thickness of the welding-seam between the lifting lugs and the cylinder is:

$$
a=0.7 \times s_{Z, 1}=0.7 \times 10.0=7.0 \mathrm{~mm} \quad \text { (umlaufend) }
$$

Diameter of the shackle:

$$
d_{S c h}=20.0 \mathrm{~mm}
$$

Diameter of the hole in the lifting lugs:

$$
d_{L}=22.0 \mathrm{~mm}\left(\leq 1.1 \times d_{S c h}=22.0 \mathrm{~mm} \text { see DVS } 2205-2, \text { equation }(40)\right)
$$

Wall thickness of the lifting lugs (requ. $s_{O e}=$ minimum required thickness):

$$
\begin{aligned}
& e r f s_{O e}=\frac{F \times A_{1} \times \gamma_{I}}{2 \times d_{S c h} \times K_{K, d}^{*}}=\frac{3815 \times 1.00 \times 1.20}{2 \times 20.0 \times 13.42}=8.5 \mathrm{~mm} \\
& \min s_{O e}=s_{Z, 1}=10.0 \mathrm{~mm} \\
& \max s_{O e}=3 \times s_{Z, 1}=30.0 \mathrm{~mm}
\end{aligned}
$$

For a selected thickness $s_{O e}=15.0 \mathrm{~mm}$ is \Rightarrow Proof supplied
Width of the lifting lugs:
Shearing stress of the cross weld when lifting the lying tank

$$
\begin{equation*}
b_{O e, 1}=\frac{F \times A_{1} \times \gamma_{I}}{a \times f_{Z} \times K_{K, d}^{*}}=\frac{3815 \times 1.00 \times 1.20}{7.0 \times 0.8 \times 13.42}=60.9 \mathrm{~mm} \tag{63}
\end{equation*}
$$

Eye bar

$$
\begin{equation*}
b_{O e, 2}=\frac{F \times A_{1} \times \gamma_{I}}{s_{O e} \times K_{K, d}^{*}}+\frac{7}{3} \times d_{L}=\frac{3815 \times 1.00 \times 1.20}{15.0 \times 13.42}+\frac{7}{3} \times 22.0=74.1 \mathrm{~mm} \tag{64}
\end{equation*}
$$

For a selected width $b_{O e}=80.0 \mathrm{~mm}$ is \Rightarrow Proof supplied
Minimum height of the lifting lugs:

$$
\begin{aligned}
& h_{O e}=2.5 \times b_{O e}=2.5 \times 80.0=200.0 \mathrm{~mm} \text { for lug with curve base } \\
& h_{O e}=2.0 \times b_{O e}=2.0 \times 80.0=160.0 \mathrm{~mm} \text { for lug with cornered base }
\end{aligned}
$$

7 Summary

This structural analysis supply the proofs described in the guideline DVS 2205-2.

